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A structural constitutive model that characterizes the active and passive responses of biological tissues
with smooth muscle cells (SMCs) is proposed. The model is formulated under the assumption that the
contractile units in SMCs and the connected collagen fibers are the active tissue active component, while
the collagen fibers not connected to the SMCs are the passive tissue component. An evolution law
describing the deformation of the active tissue component over time is developed based on the sliding
filament theory. In this evolution law the contraction force is the sum of a motor force that initiates
contraction, a viscous force that describes the actin-myosin filament sliding, and an elastic force that
accounts for the deformation of the cross-bridges. The mechanical response of the collagen fibers is
governed by the fiber recruitment process: collagen fibers support load and behave as a linear elastic
material only after becoming taut. The proposed structural constitutive model is tested with published
active and passive, uniaxial and biaxial experimental data on pig arteries.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Biological hollow structures such as blood vessels, airways, gastro-
intestinal tracts and pelvic organs are mainly composed of an
extracellular matrix and smooth muscle cells (SMCs). The extracel-
lular matrix contains mainly elastin and collagen fibers embedded in
the so-called ground substance and controls the passive deformation
of these structures. The SMCs govern and maintain the active
deformation. They have contractile units that function as sarcomeres
in skeletal muscles and are composed of actin filaments, myosin
filaments, and dense bodies [1,2] (Fig. 1(a)). The actin filaments are
anchored to dense bodies. The dense bodies serve to connect the
contractile units throughout the cell and are attached to the cell
membrane [3]. Each myosin filament is aligned between two actin
filaments, with the myosin heads uniformly spaced between these
filaments [3]. When the intracellular calcium concentration increases
due to electric, chemical, and mechanical stimuli, cross-bridges form
between the myosin heads and the actin filaments, leading to SMC
contraction [4]. SMCs generate a contraction force that is comparable
to the force generated by skeletal muscle cells. However, unlike
skeletal muscle cells, SMCs maintain this contraction force over a
longer time, and they have a much lower contraction speed so as to
accomplish their physiological functions (e.g., maintain proper pres-
sure in blood vessels, propelling food in the gastrointestinal tracts) [5].
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The contraction mechanism in skeletal muscle has been
explained by H.E. Huxley, A.F. Huxley and co-authors [6-9], who
proposed the so-called sliding-filament theory. According to this
theory, the contraction force in skeletal muscle is generated by the
attachment of myosin heads to actin filaments (i.e., the formation
of cross-bridges) during actin-myosin filament sliding. Based on
the sliding-filament theory, Hai and Murphy presented a new
model that includes the latch state introduced by Dillon et al.
[10,11] to capture the characteristic cross-bridge kinetics of the
SMCs [12]. In this state, a high contraction force is maintained at a
very low or even zero contraction speed.

Constitutive models that describe the active mechanical contribu-
tion of SMCs in biological hollow structures have been proposed over
the years. The passive response has been usually assumed to be due to
the collagen and elastin fibers, while the active response has been
assumed to be determined by the contractile units in SMCs. For
vascular tissue, Rachev and Hayashi [13] introduced an ad hoc
parameter that defined the contractile activity of SMCs to model the
active stress, and adopted a parabolic function for the typical isometric
length-tension data. Later, Zulliger et al. [14] proposed a structural
model for arteries that included the mechanical contribution of SMCs.
The active stress was defined by introducing two functions that
described the muscle tone level and the isometric length-tension
data. To more precisely account for the contraction mechanisms of
SMCs, a mechano-chemical model considering Ca?* concentration
and temperature was proposed by Stdlhand et al. [15]. In this model,
the SMC deformation was assumed to be the result of cross-bridge
deformation and filament sliding. Recently, Murtada et al. [16,17]
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Fig. 1. (a) Smooth muscle cells (SMCs) and contractile units (CUs). (b) Active collagen fibers (ACFs), passive collagen fibers (PCFs), and SMCs. (c) Model schematic for PCFs,
ACFs, and CUs in SMCs showing only a discrete number of elements: n elements for the ACFs (or CUs) and m elements for the PCFs. In the proposed model, the continuous
recruitment of these elements under load is described by a probability density function. Note: All the elements are oriented along the unit vector m in the reference

configuration.

proposed a new theoretical framework in which the active response
was defined by considering the dispersion of contractile units, actin-
myosin filament overlap and sliding, and chemical activity as done by
Hai and Murphy [12]. More specifically, they introduced a phenom-
enological parabolic filament overlap function [17], which captured
the length-tension data in isometric experiments. Finally, Chen et al.
[ 18] developed a constitutive model that also incorporated the exper-
imentally measured orientation of vascular SMCs.

In this study, a new structural constitutive model for the active
and passive mechanical behavior of biological tissues containing
SMCs is proposed. The SMC contraction force is assumed to be equal
to the force acting on the surrounding collagen fibers. This assump-
tion is justified by the fact that the contraction force generated by
SMCs can be transmitted, via their connection to the dense bodies, to
the extracellular matrix [1]. Thus, the active stress can be computed
from the stress of the collagen fibers that are connected to the SMCs,
without introducing a chemical kinetics model as done by other
investigators [16,17]. Within the framework of Hill's three-element
model [19], we develop an evolution law for the deformation of
SMCs and connected collagen fibers. Following the sliding filament
theory, in this evolution law the contraction force is the sum of a
motor force that initiates contraction, a viscous force that describes
the actin-myosin filament sliding, and an elastic force that accounts
for the cross-bridge deformation. The passive response of the
collagen fibers is captured by the non-linear elastic model proposed
by De Vita et al. [20]. The proposed structural constitutive model is
then tested using uniaxial isometric length-tension [17] and isotonic
quick-release experimental data [10] on pig carotid arteries and
biaxial isometric inflation-extension experimental data on pig cor-
onary arteries [18].

2. Model formulation

In the proposed model, the mechanical behavior of biological
tissues with SMCs is assumed to be determined by the collagen
fibers. We assume that there are two different types of collagen
fibers based on their interaction with SMCs (Fig. 1(b)). Collagen
fibers of the first type are directly connected to SMCs. These
collagen fibers determine the active mechanical response of the
tissues. The activation of SMCs is assumed to be transmitted to the
neighboring collagen fibers. For this reason, the collagen fibers
connected to SMCs are called the active collagen fibers (ACFs).
Collagen fibers of the second type are not connected to SMCs.
These determine the passive mechanical response of the tissues
and are called the passive collagen fibers (PCFs). The mechanical
contributions of other components (e.g., ground substance or
elastin) are neglected. In summary, the active and passive mechan-
ical behaviors of biological tissues with SMCs are determined by
the ACFs and PCFs, respectively.

2.1. Constitutive model for the ACFs and PCFs

Within the framework of non-linear elasticity, the active or
passive first and second Piola-Kirchhoff stress tensors, P and S,
respectively, are expressed as [21]

ow .
a3 S=-pC +2T: (1)
where p is the Lagrange multiplier that accounts for incompres-

sibility, F is the deformation gradient, C=F'.F is the right
Cauchy-Green strain tensor, and W is the strain energy of ACFs

P=—pF T4+2F. ow
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or PCFs, which can be defined as
W= / RM)W(A(C, m)) d=, 2)
>

where X is the set of all material directions, R(m) is the probability
density function for ACFs or PCFs with mean axis being parallel to
the unit vector m in the reference configuration, w is the strain
energy of ACFs or PCFs along m, and A(C,m)=+m-C-m is the
ACF or PCF axial stretch. After defining the ACF or PCF axial stress
as o = dw/d4, the first and second Piola-Kirchhoff stress tensors in
Eq. (1) can be rewritten as

P= —pF’T+F-/R(m)gm @ mdz,
g
S— _pc! +/R(m)%m ® mdx. 3)
P

Both ACFs and PCFs are assumed to support load only after
becoming taut and are linear elastic with elastic modulus K, as
done in our previous work [20]. A Weibull probability density
function with shape parameter «, scale parameter y, and location
parameter of 1 is then introduced to model the gradual straigh-
tening and recruitment of collagen fibers. Then, the axial stress &
of ACFs or PCFs is expressed as [20]

L i -1 K A
_ _1\k *((11*1)/7) A
c /ll —yK(/lt 1) e 1<< yR 1>d/1t, 4)

where A is the stretch at which the ACFs or PCFs become taut, and
A1 and A, are the lower and upper bounds for A, respectively. It
must be noted that the above equations describe both the active
and passive mechanical responses of the tissue. In the sections
below, two subscripts, “a” and “p,” will be introduced to distin-
guish active and passive axial stretches, which lead to active and
passive stresses for axisymmetric deformations. Thus, A, will
denote the axial stretch for ACFs and A, will denote the axial
stretch for PCFs.

2.2. Evolution law

The axial stretch of ACFs, 4,, along the direction m is a function
of the SMC contraction time t. In order to determine this function,
which is also known as the evolution law, we assume that, along
m, SMCs and ACFs are subjected to the same force due to their
connections and, therefore, are arranged in series (Fig. 1(c)).
Within the contractile units in SMCs, the actin-myosin filament
sliding is assumed to generate a viscous force and the cross-bridge
deformation is assumed to generate an elastic force. The viscous
force is modeled using a dashpot element and the elastic force
using a spring element. Moreover, the existence of a motor force
that initiates SMC contraction is postulated as done by other
investigators [16]. SMCs that are connected to ACFs along the
direction m are thus modeled as a combination of three parallel
elements (Fig. 1(c)). As mentioned in Section 2.1, ACFs are assumed
to be linear elastic and are modeled as a spring element. Because
along m the ACFs are arranged in series with the contractile units
of SMCs, one has

kaua(t) =nouc(t)+keuc(t)+f., 5)

where k, and u,(t) are the spring stiffness and axial displacement
of the ACFs, respectively, 7., ke, uc(t), and f. are the viscous
coefficient, spring stiffness, axial displacement, and motor force
of the contractile units, respectively, and t is the contraction time.
We emphasize that u, in Eq. (5) is the axial displacement of the
ACFs (and not the axial displacement of the taut ACFs). We also
note that the ACFs contribute to the total active stress only when
they are taut and, in that case, they behave as a linear elastic
material. However, during SMC contraction, the ACFs generate a

force, which is equal to the force in the SMCs, even when they are
not taut. This force will not contribute to the total active stress of
the tissue unless the ACFs are taut.

Along the direction m, PCFs are modeled as springs that are
parallel to the series of ACFs and contractile units (Fig. 1(c)). Thus,
ua(t) and uc(t) are related to the axial stretch of PCFs, A,(t), by

Lo+ ua(t)+uc(t)
Lo ’
where Ly is the original length of PCFs. We assume that the axial

stretch of the PCFs is equal to the axial stretch of the tissue along
m and can be expressed as

Ap(t) = (6)

for isometric contraction,

Am
Ap(6) = { Am+Y€ =1 for isotonic contraction, )

U
where An is the constant tissue stretch along m in isometric
experiments, V is the normalized initial velocity of the tissue with
respect to Ly in isotonic experiments, and x is a constant
parameter that controls the rate and amount of change of the
constant stretch. Note that, for the isotonic experiments, A,(t) can
be obtained by integrating the axial velocity of the PCFs, i.e.
ip(t)z —Ve~Ht This exponential decaying function for the axial
stretch of PCFs is assumed based on experimental data and
previous models [22,23].

2.3. Isometric contraction

For isometric contraction, Ap(t) = Am. After replacing A,(t) with
Am in Eq. (6), one can express u, in terms of u¢, An, and Lo then
substitute it into Eq. (5). The solution of the resulting differential
equation, uc(t), has the following form:

uc(t) = f(f —Am+1)e ™ * — 1)Ly +uc(0)e ", ®

where a = (ka+ke)/ne, f=ka/(ke+ka), and f=f./ksLy. The initial
axial displacement of the SMC contractile units is unknown from
the experiments, so we assume that

uc(0) = a(Am — Lo, ©

where 0 <a<1 is a fractional length parameter. This assumption
implies that the initial axial displacement of the SMC contractile units
is a fraction of the axial tissue displacement. After introducing the
parameter a, the axial stretch of ACFs can then be written as

Uy(t)
(1-a)Lo
By substituting Eq. (8) into Eq. (6), one obtains u,(t). This can then be
substituted into Eq. (10) so that, for an isometric contraction,

Am =D —ae” Y+ plf —(Am—DI(1—e~*)
1-a ’

Aa(t)y=1+ (10)

) =1+

1)

2.4. Isotonic contraction

For isotonic contraction, Ap(t) = Am+V(e “#* —1)/u, where A, is
the constant tissue stretch in isometric experiments. This expres-
sion for Ap(t) can be substituted in Eq. (6) and u, can be written in
terms of u., Am, and Lo and then substitute it into Eq. (5). The
solution of the resulting differential equation, uc(t), has the
following form:

Uuc(t) = B(f — Am+ 1)~ = 1)Ly +a(Am — D)Loe =
e~ HL_1 e—Hl_p-at
+VLop - B (12)
H H—o
where a, f3, f, Lo, a are defined as above, and f is a constant that
represents the duration of the isometric contraction that precedes
the isotonic contraction. The first two terms of the right-hand side
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of Eq. (12) represent the axial displacement of the contractile units
at the end of the isometric contraction (i.e., Eq. (8) evaluated at
t=1).

By substituting Eq. (12) into Eq. (6), one obtains u,(t) for an
isotonic contraction. This can then be substituted into Eq. (10), so
that A,(t) for an isotonic contraction becomes

(Am =11 —ae~*) 4+ BIf — (Am — D)1 —e =)
1—a

|4 _ —ut _ —ut _a—at
N (a-pe D, Be e O]

1-a 7 H—ao
Again, we note that the first two terms of the right-hand side of
Eq. (13) represent the axial stretch of the ACFs at the end of the
isometric contraction (i.e., Eq. (11) evaluated at t =t).

Aat) =1+

(13)

3. Model implementation
3.1. Reduced 1-D model

In order to test the constitutive model with published uniaxial
data collected from isometric and isotonic experiments on carotid
arteries [17,10], we assume that the tested specimens undergo a
homogeneous isochoric axisymmetric deformation. Thus, the
deformation gradient of the ACFs or PCFs has the following form:

F=ﬂil/2el ® Eq +/171/282 ® E2+AE3 ® Es, (14)
where A is the axial stretch of the ACFs or PCFs. The orthonormal
bases {E;,E;,E3} and {eq, e;,e3} are defined so that the E; and e3
are the loading directions in the reference and current configura-
tions, respectively.

In the reference configuration, the ACFs or PCFs are assumed to be
all aligned along the loading direction Es. Thus, in Eq. (3),
R(m) = 6(m—Ej3), where § is the Dirac delta function. Substituting
Egs. (4) and (15) into Eq. (3), the non-zero components of the active
or passive first Piola-Kirchhoff stress tensor are the following:

P11 =Py = —p/l’”z, P33 = —Plrl/z‘*'o'(ﬂ) 15

After applying the traction-free boundary condition P;; = Py =0 on
the lateral surface of the specimens, we obtain p=0. Thus, the
constitutive equation that defines the response of the ACFs or PCFs is
y!

P33(A)=0(A) = / ’ fk(/lt - 1)'(_16’("1"”/7)K1< (i, 1) di.  (16)
Ny At

The above equation defines the response of the ACFs for A= A4(t),
A1 = Am, and A, = Aa(t). More specifically, for an isometric contraction
Za(t) is given by Eq. (11) and for an isotonic contraction A,(t) is given
by Eq. (13). Eq. (16) also defines the response of the PCFs for A = A,(t),
A1 =1, and 4, = A,(t) where A(t) is given by Eq. (7). The total stress
of the tissue is obtained as the sum of the stress of ACFs, P33(4,), and
the stress of PCFs, P33(4p). We note that the model parameters «, ¥,
and K in Eq. (16) are assumed to have the same values for both ACFs
and PCFs.

3.2. Reduced 2-D model

The constitutive model proposed is also tested with biaxial data
that are obtained from isometric inflation-extension tests on
coronary arteries. Thus, we assume that the specimens undergo
a homogeneous isochoric axisymmetric deformation defined by

F=(Agh) 'er @ Eg+Apey @ Eg+ 1€, @ E,, 17

where Ay and 4 are the circumferential stretch and axial stretch of
the ACFs or PCFs, respectively. The orthonormal bases {Eg,Eg, E;}
and {eg,ep,e,} are defined so that the Eg, E, and eg, e, are the
biaxial loading directions in the reference and current

configurations, respectively. In the reference configuration, the
collagen fibers are assumed to be aligned in two preferred

directions m; = cos (y)Ey+ sin(W)E; and
m, = cos (y)Ey— sin(y)E,, where y and —y are the angles off
the circumferential axis Ep. Then,

R(m) = (6(m—my)+d6(m—my))/2 and the strain energy in Eq. (2)
can be re-written as

_ W€, my)) +w(A(C, my))
= 5 ,

where A(C,m) and A(C,m,) are the axial stretches of the fibers. It
then follows from Egs. (7), (11), and (13) that since Am(C,m;) =

Am(C,my) = \/ﬂé cos 2y + 47 sin %y, then A(C,m;)=A(C,my). Then
the axial stresses along m; and m, defined by Eq. (4) are equal:
6(A(C, my)) = 6(A(C, my)).

Substituting Egs. (4) and (18) into Eq. (3), one gets the
following non-zero components of the second Piola-Kirchhoff
stress tensor:

w (18)

S = _p(/la/lz)za 509 = %ﬂ)cos Z(W) _ﬂ’
49
_od . 2 p
Szz = TSIH (V/)f? (19)

z

By following Fung et al. [24], we assume that S;; =0 and, hence,
p=0. Then, it follows that

Seo = %ﬂ) cos?(y), Su= %ﬂ) sin z(ll/)a (20)

where

o) = //12 f(ﬂt— 1)K’1ef((/1tf DK <i_ 1) di.. 1)
o re A

(Egs. (20) and 21) define the non-zero components of the second
Piola-Kirchhoff stress tensor of the ACFs for A = A4(t), A1 = A, and
Ao = Aa(t), where A,(t) is given by Eq. (11). Egs. (20) and (21) are the
non-zero components of the second Piola-Kirchhoff stress tensor
of the PCFs for A = A,(t), 41 =1, and 4, = A,(t), where A,(t) is given
by Eq. (7);. Again, the model parameters, k, ¥, and K, in Eq. (21) are
assumed to have the same values for both ACFs and PCFs.

3.3. Parameter determination

The model parameters were identified by using three sets of
published experimental data on pig arteries that were obtained by
performing uniaxial isometric length—tension tests [17], uniaxial
isometric and isotonic quick-release tests [10], and biaxial iso-
metric inflation-extension tests [18]. These parameters were
calculated by minimizing three different error functions, as
described in detail below, using the fmincon function with the
interior-point method in MATLAB (MATLAB R2013b, MathWorks).
All the model parameters were constrained to be non-negative.
Furthermore, the parameters a satisfied the inequality 0 <a < 1.

When using the isometric length-tension data [17], the seven
parameters {a, f3, q, f, k, y, K} were obtained by minimizing the
error function, Ery, defined as

Er =Y (PSP (AalAm)) — PY5" (Aa(Am)))?
jvm

+ 3 (PSP (Ap(Am) — P35 (Ap(Am)))°

Am
+3 (PSP (Ra(t) — P (Aa()), 22)
t

where P$P(1a(Am)) and P{¥(a(Am)) are the experimental and
theoretical non-zero components of the first Piola—Kirchhoff stress
tensor for the ACFs, respectively, and PS5 (Ap(Am)) and PEF (Ap(Am))
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are the experimental and theoretical non-zero components of the
first Piola-Kirchhoff stress tensor for the PCFs, respectively. We note
that the active and passive stretches, 4, and 4, are functions of the
tissue stretch Ay, via Egs. (11) and (7);, respectively. Experimentally,
the stresses were always measured at a contraction time t=300 s.
PSP (Aa(t)) and P§¥° (1a(t)) are the experimental and theoretical non-
zero components of the first Piola-Kirchhoff stress tensor for the
ACFs, respectively. These vary with the contraction time t for a
constant tissue stretch A, = 1.5.

Uniaxial isometric and isotonic experimental data [11] were
also used to compute the model parameters. Toward this end, the
eight model parameters {a, f, q, f, k, v, K, u} were identified by
minimizing the error function, Er,, defined as

Ery = > (PSP (Aa() — PI5* (Aa(1)))?
t
+Z(<F/FO)EXP(V>—(F/Fo)f“"‘(vnz, 23)

where PSP(A4(t)) and P§¥ (Aa(1) are the isometric experimental
and theoretical non-zero components of the first Piola-Kirchhoff
stress tensor for the ACFs at a constant Ay = 1.6, respectively.
These components change with the contraction time t. (F/Fo)**? (V)
and (F/Fo)™°"(V) define the experimental and theoretical normal-
ized forces applied to the tissue during isotonic experiments as
functions of the isotonic initial velocities V computed at a constant
Am=1.6 and constant contraction time t=3000s. F/F, is the
normalized force with respect to the maximum force Fy obtained
in isometric experiments. It is equal to the ratio of the total stress,
P33(Aa(V)+P33(4p(V))), in isotonic experiments and the total stress
obtained in isometric experiments, which was reported to be
290 kPa. We note that 4, and 4, depend on V via Eqs. (13) and (7),,
respectively.

Biaxial isometric data from inflation-extension tests [18] were
used to evaluate the eight model parameters {a, f3, q, f, k, 7, K, y/}.
The following error function, Ers, was minimized:

Er = Z{[(Sexp(ﬂa(ﬂe» S " (2a(29))) + (8537 (Aa(29)

—S“’“f(ia(ﬂ 0’

+(S5> (Ap(A0)) — S ™ (Ap(Ap)) +(SeP (Ap( )

—SP Ap (ANl 4,

+I(S5 (Aa(10) — Shs ™ (Aa(Ag))* +(SoP (Aa(A9)) — S (Aa(A9)))?
+(SE (Ap(A0) — S " (Ap(Ag)) +(S5P (Ap(A9)

—SP (AN 4, _ 1) 24)

where SgiP(a(49)) and Stheor(la(ig)) are the experimental and
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theoretical circumferential components of the second Piola-
Kirchhoff stress tensor for the ACFs, respectively, and S5:P(1a(4y))
and S°(1,(A)) are the experimental and theoretical axial com-
ponents of the second Piola-Kirchhoff stress tensor for the ACFs,
respectively. Sgi¥(4p(49)) and Sthe‘”(/lp(/lg)) are the experimental
and theoretical circumferential components of the second Piola-
Kirchhoff stress tensor for the PCFs, respectively, and S53°(1p(4y))
and SUT(1,(1p)) are the experimental and theoretical axial
components of the second Piola-Kirchhoff stress tensor for the
PCFs, respectively. The active and passive stretches, 4, and A, are
functions of the circumferential tissue stretch 1y at a constant axial
tissue stretch A, of 1.2 or 1.3. The stresses were always measured
experimentally at a constant contraction time t=900 s.

4. Results

In the study by Murtada et al. [17], active and passive stress—
stretch data were collected from strips of pig carotid media
arteries in the circumferential direction. Stretch data were com-
puted by normalizing the tissue length with respect to the tissue
length in the slack configuration. It must be noted that, although
isometric length-tension data have been published by several
investigators [4,25,26], the stretch of the tissue is often measured
as the tissue length normalized with respect to the optimal length,
i.e. the length at the maximal active tension. The data reported by
Murtada et al. [17] captured the tissue deformation independent of
the tested specimen's dimensions and optimal length. For this
reason, these data were selected to compute the model parameters
in Egs. (11) and (16).

The digitized experimental data and our model fit are shown in
Fig. 2. The values of the model parameters are reported in Table 1.
Active stress-time data recorded at an optimal stretch of 1.5 were
presented by Murtada et al. [17]. The constitutive model fits well
these data: it captures the increase in the active stress with the
contraction time of SMCs (Fig. 2(a)). The active stress was found to be
almost constant after reaching its maximum value at 200 s. In Fig. 2
(b), the digitized active and passive stress—stretch data and model fits
are shown. The constitutive model describes well the typical passive
non-linear elastic response of soft biological tissues. It also reproduces
the increase in active stress with tissue stretch and the decrease in
active stress after reaching the maximum value at the optimal stretch.
The coefficient of determination R?> was found to be 0.862. Consider-
ing the variation in the active and passive stress—stretch experimental
data, the constitutive model appears to be capable of fitting the
uniaxial isometric experimental data by Murtada et al. [17].

100 1 o Active stress
® Passive stress

1 1.2 1.4 1.6 1.8 2
Stretch A

Fig. 2. Active and passive uniaxial data [17] and model fits (R>=0.862). (a) Active stress-time experimental data (red symbols) at a stretch of 1.5 and model fit (continuous
line); (b) Active and passive stress—stretch data (blue and red symbols, respectively) and model fit (continuous lines). (For interpretation of the references to color in this
66 Q5 figure caption, the reader is referred to the web version of this paper.)
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Uniaxial isometric data obtained from length-tension experi-
ments and uniaxial isotonic data obtained from quick-release
experiments on swine carotid media specimens were reported
by Dillon et al. [10]. We note that many experimental studies have
focused on determining either isometric length-tension relation-
ships or isotonic force-velocity relationships [4,11,22,12]. How-
ever, since both isometric and isotonic data were reported by
Dillon et al. [10], these data were selected and used simulta-
neously to determine the model parameters in Egs. (7), (13), and
(16). The digitized active stress-time experimental data at an
optimal stretch of 1.6 [10] and the model fit are shown in Fig. 3(a).
The constitutive law with the values of the model parameters
reported in Table 1 reproduces the results of the experiments:
there is a quick increase in the active stress followed by a plateau
region that starts at around 100s. The model also successfully
illustrates the non-linear force-velocity relationship, which is
characterized by a decrease in velocity with increasing force while
the tissue isshortening (Fig. 3(b)). Overall, the proposed model can
simulate the uniaxial isometric and isotonic behavior of pig carotid
arteries (R>=0.922).

Recently, biaxial mechanical data for pig coronary arteries
obtained from inflation-extension experiments were presented
by Chen et al. [18]. To our knowledge, among published data, this
is the most complete set of experimental data that characterizes
the biaxial active and passive stress—stretch relationships [27-29].
For this reason, we utilized these experimental data to determine
the model parameters in Eqgs. (20) and (21). In Fig. 4, both the
digitized active and passive experimental stress data collected in
circumferential and axial directions under a constant axial stretch
of 1.2 or 1.3 are plotted versus the circumferential stretch with the
model fits. The biaxial passive and active stress-stretch relation-
ships are well captured by the model. The values of the model
parameters are reported in Table 1. The R? was found to be 0.965.
As expected, the axial stresses are found to be lower than the
circumferential ones. This can be explained by the collagen fiber
preferred orientation of 37° off the circumferential direction (see
Table 1). That is to say, the tissue is anisotropic. It is stiffer in the
circumferential direction than in the axial direction.

Table 1
Model parameters.

5. Discussion

In recent years, mechano-chemical constitutive models that
account for the chemical states of myosin have been developed for
SMC contraction based on the so-called four-state chemical model
[15,30,17]. In these models, the active stress of biological tissues
depends on the number of activated myosin heads and their
stiffness. This number is obtained from chemical kinetics models.
In the constitutive model proposed by Kroon [30], five chemical
parameters were fixed based on the work by Hai and Murphy [12],
and two additional chemical parameters were identified using
experimental data published by Dillon and Murphy [11]. Four
material parameters for the active mechanical response and five
material parameters for the passive mechanical response were
then determined by fitting mechanical experimental data. In the
constitutive model proposed by Murtada et al. [17] two chemical
parameters were estimated by the authors and five chemical
parameters were fixed based on the work by Rembold and Murphy
[31] and Hai and Murphy [12]. In addition, five material para-
meters for the active mechanical response and three material
parameters for the passive mechanical response were also deter-
mined using mechanical experimental data. Like the above-cited
mechano-chemical models, the constitutive model we presented
here fits the mechanical experimental data well but with fewer
parameters.

In formulating the proposed constitutive model, we assumed
that the active stress of the SMCs can be computed from the stress
of their connected ACFs. This assumption was made since there is
no information about the SMC deformation within the tissue
during contraction. Under this assumption, the active response
of the tissue can then be described without introducing a kinetics
model for the interaction of the myosin heads and thin filaments.
Instead, based on the sliding filament theory, we assumed that
there are three forces that generate contraction: a motor force that
initiates contraction, an elastic force for the cross-bridge deforma-
tion, and a viscous force for the filament sliding. The resulting
evolution law expressed by Eq. (11) for an isometric contraction
and Eq. (13) for an isotonic contraction defines the deformation of

Experimental data a(s™h Vil a fe(s™h K v K (Mpa) u/y (deg)
Uniaxial data [17] 0.023 0.328 0.777 0.641 1.103 1.048 0.188
Uniaxial data [10] 0.134 0.700 0.710 0.720 5.949 2.051 1.400 0.025
Biaxial data [18] 0.020 0.138 0.190 0.652 4.235 0.398 2.614 37.00
b
300 > 0.04
<
250
- g 0.03
£ 200 i
=2 =
2150 > 0.02
B 'g
“ 100 ©
=¥
> 001
50
0 : : 0
0 200 400 600 0 0.2 0.4 0.6 0.8 1
Time (s) F/E,

Fig. 3. Active and passive uniaxial data [10] and model fit (R>=0.922). (a) Active stress-time experimental data (red symbols) at a stretch of 1.6 and model fit (continuous
line); (b) velocity-force experimental data (green symbols) and model fit (continuous line). (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this paper.)
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Fig. 4. Active and passive biaxial data [18] (R*=0.965). (a) Active, passive, and total circumferential stress—stretch data at an axial stretch of 1.2 and model fits (continuous
lines). (b) Active, passive, and total axial stress-circumferential stretch data at an axial stretch of 1.2 and model fits (continuous lines). (c) Active, passive, total circumferential
stress—circumferential stretch data at an axial stretch of 1.3 and model fits (continuous lines). (d) Active, passive, and total axial stress—-circumferential stretch data at an axial

stretch of 1.3 and model fits (continuous lines).

ACFs with only four parameters. Three additional parameters were
needed to describe the active and passive collagen fibers’ mechan-
ical behavior: two parameters for the recruitment of the fibers and
one parameter for their elastic modulus. Overall, seven to eight
parameters were needed to capture the results of uniaxial isotonic
and isometric experiments on arteries.

The non-linearity in the active stress stemmed from the overlap
mechanisms between the actin and myosin filaments for isometric
contractions in the structural constitutive model by Murtada et al.
[17]. These authors introduced a homogeneous parabolic function
to describe this overlap mechanisms and, consequently, the active
stress as a function of the tissue stretch had a parabolic profile.
This led to underestimated values of the active stress when the
tissue was stretched above the optimal stretch. In our study, the
non-linearity in the active stress was assumed to be determined
by the recruitment model that defined the stress of the ACFs.
Because this stress was assumed to be equal to the stress of the
SMCs (Fig. 1(c)), we did not need a description of the SMC
deformation and, thus, of the overlap mechanism to compute
the active stress. The recruitment model with a Weibull prob-
ability distribution function yielded a better fit of the active stress—
stretch data following the optimal stretch.

The parameters that were found by curve fitting the model to
three sets of experimental data on arteries [17,10,18] are reported
in Table 1. The value of the parameter & computed by using the
data by Murtada et al. [17] was comparable to the value computed
using the data by Chen et al. [18], but lower than the value
computed using the data by Dillon et al. [10]. For a higher a-value,
the maximum stress during an isometric test was reached within a
shorter interval of time. This can be observed from the experi-
mental data in Fig. 2(a) and Fig. 3(a). As f# increased, the stretch of
the ACFs in isometric contractions increased as one can see from
Eq. (11) and, consequently, the active stress increased too. The high

p-value obtained from the data by Dillon et al. [10] was due to the
high value of the active stress obtained in their experiments. The
elastic modulus of the collagen fibers, K, had a lower value for the
data published by Murtada et al. [17]. This lower K-value can be
explained by the lower active stress reported by Murtada et al.
when compared to that reported by Dillon et al. However, the K-
value from the data by Murtada et al. was lower than the K-value
computed from the data by Chen et al. [18] despite the lower
active stress reported by these authors. This may be explained by
the re-orientation of the collagen fibers that may occur during
loading and was neglected in the present model. The value of q,
which denotes the ratio of the initial axial displacement of the
SMC contractile units to the axial tissue displacement, obtained
from biaxial experimental data [18] was lower than that obtained
from uniaxial experimental data [17,10]. Thus, the initial axial
displacement of the SMC contractile units given by Eq. (9) is much
lower along the two preferred collagen fiber directions than along
the circumferential direction of the arteries. The values of the
motor force f obtained from the three sets of experimental data
[17,10,18] were comparable. Finally, the collagen fiber orientation
angle y was found to be similar to the 39° angle reported by Chen
et al. [18].

This study has several limitations that are worth mentioning.
Thus far we have only tested the proposed constitutive model with
uniaxial and biaxial experimental data considering specific defor-
mations. We selected published data on arteries to identify the
model parameters since the active and passive mechanical data on
these biological tissues are the most complete sets of published
data. Three dimensional data that characterize the active and
passive mechanics of arteries and other biological tissues are
needed to further evaluate the proposed model. Moreover, in the
reference configuration, the collagen fibers and their connected
SMCs have been assumed to be all aligned along one direction
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when testing the model with uniaxial data or two directions when
testing the model with biaxial data. In fact, the collagen fibers and
SMCs are oriented along different directions within the arteries
and the probability density function R(m) in Eq. (2) should be
computed through techniques such as small angle light scattering
[32] and histology [18]. Finally, the orientation of the contractile
units within the SMCs should also be taken into consideration in
the model development. Such orientation is important since the
active force is generated along these units and transmitted,
through filament anchor points on the cell membrane, to sur-
rounding collagen fibers and ground substance. Information about
the micro-structural changes of the contractile units during
mechanical loading is crucial for developing robust micro-
structural constitutive models. These models will provide a better
understanding of the mechanism of smooth muscle contraction
and, ultimately, improve the treatment of medical disorders such
as hypertension, asthma, and pelvic floor disorders caused, in part,
by a mechanical dysfunction of the SMCs.

6. Conclusions

We proposed a new structural constitutive model that charac-
terizes the active and passive mechanical responses of biological
tissues containing SMCs. The active response was attributed to the
collagen fibers connected to the SMCs and the passive response was
attributed to the remaining collagen fibers. A new evolution law for
the collagen fibers that are connected to the SMCs and are thus
activated with them was derived based on the sliding filament
theory. The active force was assumed to be determined by an initial
motor force, cross-bridge deformation, and filament sliding. The
constitutive model was validated using uniaxial isometric and
isotonic and biaxial isometric experimental data on arteries
[10,17,18]. This study advanced our understanding of the active
mechanical behavior of biological tissues containing SMCs.
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